
Modeling a Theory of Second Language Acquisition in ASP

Daniela Inclezan
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

daniela.inclezan@ttu.edu

Abstract

This paper is a contribution to the line of research opened by
Balduccini and Girotto (2010; 2011), which explores the suit-
ability of Answer Set Programming (ASP) for the formaliza-
tion of scientific theories about the mind. We investigate the
suitability of ASP in modeling one of the dominant theories
about second language acquisition: Input Processing (Van-
Patten 2004). This theory is formulated as a series of default
statements that rely on what is assumed to be the learners’
knowledge about the world and the second language. We re-
port on an application of our model to predicting how learners
of English would interpret sentences containing the passive
voice and present a system, PIas, that uses these predictions
to assist language instructors in designing teaching materials.

Introduction
This paper is a contribution to the line of research opened
by Balduccini and Girotto (2010; 2011), which explores
the suitability of Answer Set Programming (ASP) (Gelfond
and Lifschitz 1991; Niemelä 1998; Marek and Truszczyn-
ski 1999) for the formalization of scientific theories about
the human mind. As pointed out in the cited articles, a sub-
stantial number of theories that are of a qualitative nature
are formulated in natural language, often in the form of de-
faults. Modeling these theories in a precise mathematical
language would allow scientists to accurately study and test
their statements. ASP seems to be a suitable tool for this
task, as it provides the means for an elegant and precise
representation of defaults. Furthermore, there are known
methodologies for knowledge representation using ASP that
may be relevant for some theories.

In this work, we explore whether ASP alone is sufficient
to model one of the dominant theories about second lan-
guage acquisition—Input Processing (VanPatten 2004)—or
if extensions of ASP are necessary for the task. In this con-
text, the expression “second language” refers to any lan-
guage that is learned after the first one. “Second language
acquisition” is the process by which people learn a second
language. Input Processing (IP) is a theory about how learn-
ers of a second language process input in that language. It
describes the strategies that second language learners use to

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

get meaning out of written or spoken text in the second lan-
guage in on-line comprehension, given their limitations in
vocabulary, working memory, or internalized knowledge of
grammatical structures. As a result of applying these strate-
gies, learners do not always come up with the correct inter-
pretation of input sentences, and this is assumed to cause
delays in the acquisition of certain grammatical structures.

For instance, IP predicts that beginner learners of English
reading the sentence “The cat was bitten by the dog” would
only be able to retrieve the meanings of the words “cat”,
“bitten”, and “dog” and end up with something like the
sequence of concepts CAT-BITE-DOG. Although they may
notice the word “was” or the ending “-en” of the verb “bit-
ten”, they would not be able to process them (i.e., connect
them with the function they serve, which is to indicate pas-
sive voice) because of limitations in processing resources.
Next, IP predicts that the sentence above, now mapped into
the sequence of concepts CAT-BITE-DOG, would be incor-
rectly interpreted by these learners as “The cat bit the dog”
because of a hypothesized strategy of assigning agent status
to the first noun encountered in a sentence.

IP, as described in (VanPatten 2004), consists of two prin-
ciples formulated as defaults. Each principle contains sub-
principles that represent refinements of or exceptions to the
original defaults. For example, a sub-principle of IP predicts
that beginner learners of English would correctly interpret
the sentence “The shoe was bitten by the dog” because agent
status cannot be assigned to the first noun, as a shoe cannot
bite. This can happen even if the learner has not yet internal-
ized the structure of the passive voice in English or did not
have the resources to process it in the above sentence. Sim-
ilarly for the sentence “The man was bitten by the dog” be-
cause it is unlikely for a man to bite a dog. These strategies
can also be applied to stories consisting of several sentences
where information from previous sentences conditions the
interpretation of later ones. For example, the second sen-
tence of the story: “The cat killed the dog. Then, the dog
was bitten by the cat.” would be interpreted correctly even
by beginner learners, because a dead dog cannot bite.

ASP seems to be a natural choice for modeling this theory,
as defaults and their exceptions can be represented in ASP
in an elegant and precise manner. Furthermore, IP assumes
that learners possess some commonsense knowledge about
actions and dynamic domains. For instance, they know un-

der what conditions a biting action can occur. In ASP, there
is substantial research on how to represent actions and dy-
namic domains in which change is caused by actions. We
will illustrate how we used these features of ASP to cre-
ate a formalization of IP. Our formalization allowed us to
notice some vague areas in the theory and to make predic-
tions about how learners would interpret simple sentences
and paragraphs containing the passive voice in English. We
used these predictions to create a system, PIas, that can
assist language teachers in designing instructional materi-
als. PIas relies on the guidelines of an established teaching
method, Processing Instruction (PI) (VanPatten 1993), that
is based on the principles of Input Processing. This method
says that a sentence is valuable for teaching and testing if
learners cannot interpret it correctly unless they have inter-
nalized the appropriate grammatical structures.

In what follows, we give an introduction to ASP, describe
our encoding of the learners’ background knowledge, and
present our formalization of the IP principles. We test our
model by comparing its predictions with the ones of IP. We
present the system PIas and end with discussions and di-
rections for future work.

Answer Set Programming
Answer Set Programming (ASP) (Niemelä 1998; Marek and
Truszczynski 1999) is a declarative programming paradigm
based on the answer set semantics (Gelfond and Lifschitz
1991). Before we define programs of ASP, we introduce
some preliminary definitions. A signature is a collection of
constant, function, predicate, and variable symbols. Terms
and atoms over this signature are defined as in predicate
logic. A literal is an atom a or its negation ¬a, where the
symbol ¬ denotes strong negation. A rule over a signature
Σ is a statement of the form:

l1 ∨ . . . ∨ li ← li+1, . . . , lm, not lm+1, . . . , not ln

where l1, . . ., ln are literals of Σ and the symbol “not ” de-
notes default negation.

A program of ASP is a pair 〈Σ, Π〉, where Σ is a signature
and Π is a collection of rules over Σ.

For the formal semantics of programs of ASP we refer
the reader to (Gelfond and Lifschitz 1991). For brevity, we
only include here the informal semantics. A program can
be seen as a specification for the set(s) of beliefs held by a
rational agent. An answer set A of a logic program 〈Σ, Π〉
is a consistent set of literals of Σ that corresponds to a set
of beliefs held by the rational agent, such that A satisfies the
rules of Π and the rationality principle: “Believe nothing
you are not forced to believe.”

The properties of ASP programs and the methodology of
representing knowledge in ASP were the subject of exten-
sive research. ASP is particularly suitable for default rea-
soning, reasoning with incomplete or non-deterministic in-
formation, and representing and reasoning about dynamic
domains. Another advantage of ASP is that different rea-
soning tasks can be reduced to computing answer sets of
a logic program, which can be done using general purpose
ASP solvers.

Logic Form of Input
The input for our model of the IP theory is a logic form en-
coding of sentences and paragraphs. Our logic form con-
tains two sorts, sentence and paragraph. The sentence
structure is represented using the predicate word, where
word(K, S,W) means that the Kth word of sentence S is
W ; we assume that the index K starts at 1. For example, the
sentence “The cat was bitten by the dog” in the introduction
is encoded as:

sentence(s).
word(1, s, “the”). word(2, s, “cat”).
word(3, s, “was”). word(4, s, “bitten”).
word(5, s, “by”). word(6, s, “the”). word(7, s, “dog”).

The structure of a paragraph is encoded using the predicate
sent(K, P, S) – the Kth sentence of paragraph P is S. A
paragraph p with two sentences, s1 and s2, is defined as:

paragraph(p).
sent(1, p, s1). sent(2, p, s2).

For any input sentence or paragraph X , by lp(X) we denote
the logic form encoding of X .

Learners’ Background Knowledge
The IP theory assumes that, in their minds, the learners pos-
sess some background knowledge about the world and its
dynamics, and a linguistic system of the second language
containing, among others, a complex mental dictionary. As
it is not clear how this knowledge is actually encoded in the
mind, we represent it using known methodologies from the
field of nonmonotonic reasoning, and, in particular, from the
area of knowledge representation using ASP. We are not try-
ing to replicate the human mind, but rather create a represen-
tation that would produce the same results in relation to the
IP theory as the ones demonstrated by empirical studies and
illustrated by the sentences presented in the introduction.

Inheritance Hierarchies
We assume that a learner’s knowledge base contains classes
of concepts (i.e., cognitive constructs) organized into a
DAG-like inheritance hierarchy C with root concepts with
three children: actions, entities, and semantic notions.
Instances of the latter class are possible meanings of gram-
matical structures (e.g., the concept of “some other person
than the speaker and the addressee”, referred to as third-
person singular). Classes may have subclasses, as you can
see in Fig. (1)(a). This is not a complete picture of C but
rather a sufficiently detailed one for the later examples.

Additionally, the learner’s knowledge base contains
classes of words of a language, organized into a tree-like
inheritance hierarchy L with root words, with two chil-
dren: content words and forms. Content words are those
that carry the meaning of a sentence: nouns, verbs, adjec-
tives, and adverbs. Forms, also called “grammatical struc-
tures”, are inflections, articles, or particles. For example,
the third-person-singular marker “-s” attached to verbs as in
“makes” and the article “the” are forms. Based on the for-
mulation of IP, we assume that learners that have acquired

Figure 1: Instances of Hierarchies C and L

a form also know implicitly whether that form is meaning-
ful, which means that it contributes meaning to the over-
all comprehension of a sentence, or not. Similarly, we as-
sume that they are able to distinguish between redundant and
nonredundant forms, where a redundant form is one whose
meaning can usually be retrieved from other parts of a sen-
tence. A sufficiently detailed view of L for our examples
appears in Fig.(1)(b), where m forms stands for meaning-
ful forms, nm forms for nonmeaningful, nr m forms for
nonredundant meaningful, and r m forms for redundant
meaningful forms. In what follows, we will use the term
word categories (or just categories) for L’s classes.

We model the two inheritance hierarchies in ASP by ap-
plying common practices (Baral 2003). We denote the re-
sulting logic program by H. The signature of H contains
class names from the two hierarchies; a sort class; a rela-
tion is subclass(C1, C2) (C1 is a subclass of C2); and its
transitive closure subclass(C1, C2). H contains rules for
subclass and, for each hierarchy, facts of the type:

is subclass(entities, concepts).

Next, we consider instances of hierarchies C and L. Infor-
mally, an instance of a hierarchy is an interpretation of its
classes, given a universe, such that it respects the subclass
relation and the interpretation of the root class is equal to the
universe. In addition, although L is a tree, we assume that
the interpretations of its leaves are not disjoint. The reason
behind this assumption is that, instead of separating a word
into its smaller parts (e.g., “bitten”= “bite”+“-en”), we say
that an inflected word belongs to two classes (e.g., we say
that “bitten” is both a verb and a nr m form, which means
a nonredundant meaningful form). We do so for simplicity:
word formation rules are not trivial and representing them
is outside the scope of this paper. Note that, for a person,
L may have multiple instantiations: one for each language
he knows. Given that our examples will be about passive
voice in English, we only consider here L’s instantiation for
English that a learner may possess.

To model instances of the two hierarchies, we extend the

signature ofH by a sort object, a relation is a(X,C) (object
X is a C) denoting links between objects and leaf classes,
and inst(X, C) (X is an instance of C), for the closure of
is a. We add toH rules for inst and facts of the form:

is a(dog, canines). is a(“dog”, common nouns).

Note that we use constants (e.g., dog) for concepts and string
constants (e.g., “dog”) for words. Here, an instance dog
refers to a prototypical dog. The instantiation of L will differ
for learners of different levels of proficiency: beginner learn-
ers will know less content words than advanced learners and
very few forms. The instance in Fig.(1)(b) corresponds to an
advanced learner.

Finally, we need to model the connections learners make
between words and concepts. For simplicity, we assume that
all the connections in a learner’s knowledge base are correct.
As the same word can belong to different leaves of hierarchy
L, in our formalization we do not associate words to con-
cepts, but instead specify associations of concepts to pairs
formed by a word and a leaf word category. Informally, if w
is a word, ctg is a leaf word category, and the pair 〈w, ctg〉
is connected to a concept c, we say that w interpreted as
a member of ctg has the meaning c. For example, we say
that “bitten” interpreted as a content word has the meaning
bite; the same word interpreted as a nonredundant mean-
ingful form has the meaning past participle. To represent
these associations, we extend the signature of H by a rela-
tion has meaning(W, Ctg, C) saying that word W inter-
preted as a member of category Ctg has the meaning C. We
require Ctg to be a leaf of L. H contains facts like:

has meaning(“dog”, common nouns, dog).
has meaning(“bitten”, verbs, bite).
has meaning(“bitten”, nr m forms, past participle).

We add a relation meaning(W, Ctg, C) to extend
has meaning to super-classes of the word category Ctg.
Nouns are associated with entities, verbs with actions, and
forms with semantic notions. The programH contains more
such associations for advanced learners than for beginners.

Action Descriptions
The learners’ background knowledge contains, besides the
two instantiated hierarchies mentioned above, some repre-
sentation of action preconditions and effects. As shown in
the introduction, learners use this knowledge in processing
isolated sentences and stories. We formalize this knowledge
using standard methodologies from the field of representing
and reasoning about action and change, more specifically
from the area of representing knowledge about discrete dy-
namic systems in ASP.

Discrete dynamic domains are domains in which change
is caused by actions in a way that can be modeled by transi-
tion diagrams whose nodes are states of the world and whose
arcs are labeled by actions. As transition diagrams can easily
become unmanageable in size, such domains are normally
described using an action description – a collection of ax-
ioms of some action language (Gelfond and Lifschitz 1998).
The signature of an action description specifies the objects
of the domain, their relevant properties, and possible actions
of the domain. There are two types of properties: statics,
the value of which cannot be changed, and fluents, which
can be changed by actions. Axioms of an action description
specify the direct and indirect effects of actions, and action
preconditions. They are eventually translated into logic pro-
gramming rules. In this paper, we consider a translation into
ASP similar to the one in (Balduccini and Gelfond 2003)
and only show the translated rules due to space constraints.

In our case, objects of the domain are instances of classes
entities and actions in hierarchy C. We will refer to ac-
tions of the domain as events in order to be consistent with
the terminology used in the IP theory and to distinguish them
from instances of the class actions. Events of the domain
are terms of the type ev(A, E1, E2) where A is an instance
of class actions denoting a type of action, and E1 and E2

are instances of the class entities denoting the agent and
the object of that action, respectively. Informally, the term
ev(bite, cat, dog) denotes the event of “the cat biting the
dog”. The term ev(bite, shoe, dog) denotes the event of “the
shoe biting the dog”, which cannot occur in real life, but is
an event that people can describe in a sentence. We only
consider events that are denoted by transitive verbs (i.e., re-
quiring an agent and an object) because this is the type of
events that appears in the examples of the IP theory. Prop-
erties of the domain are also denoted by terms. Some ex-
amples are the fluents: alive(x), can move(x) (x is able to
move by itself), and the static has teeth(x).

Our action description, calledA, is a logic program whose
signature contains: the above mentioned objects, events, and
properties; a sort called step; a relation holds(F, I) (fluent
F holds at step I); and a relation occurs(Ev, I) (event Ev
occurs at step I of the story). A contains rules describing
the direct effects of actions, which have the form:
¬holds(alive(E), I + 1)← occurs(ev(kill, E1, E), I).

The informal reading is that killing an entity causes it to stop
being alive. Indirect effects of actions are described inA via
rules of the type:
¬holds(can move(E), I)← ¬holds(alive(E), I).

This says that a dead entity cannot move by itself. Finally,
A contains rules describing event preconditions. To ease

the later encoding of the IP theory, we introduce a separate
relation impossible and define ¬occurs in terms of it:
¬occurs(Ev, I)← impossible(Ev, I).
impossible(ev(A, E1, E2), I)←

inst(A, animate agent actions),
¬inst(E1, living entities).

impossible(ev(A, E1, E2), I)←
inst(A, animate agent actions),
¬holds(alive(E1), I).

impossible(ev(A, E1, E2), I)←
inst(A, tooth req actions),
¬has teeth(E1).

The second and third rules above say that the agent of an
animate-agent action must in fact be a living entity that is
alive when the event occurs. The last rule says that a tooth-
requiring action cannot be performed if the agent has no
teeth.
A contains the standard ASP encoding of the Inertia Ax-

iom (Hayes and McCarthy 1969) for fluents, which consists
of two defaults. We will later use the axioms ofA given here
to illustrate an application of our model of IP.

Learners also possess some knowledge about events that
actually happened in the real world. We store this type of
information in a logic program G as facts of the type:

hpd(ev(bite, tyson, holyfield)). 1

Informally, the fact above says that at some point in the past
it happened that Mike Tyson bit Evander Holyfield.
G contains some additional information about what values

a learner expects fluents to have at the beginning of a story
encountered for the first time: unless otherwise specified in
the text, he will believe that animals can move, living entities
are actually alive, etc. Such defaults will be encoded as:

holds(can move(E), 0)←
inst(E, animals),
not ¬holds(can move(E), 0).

where 0 is the time step of the first sentence. We separate G
fromA because, unlikeA, G does not specifies the transition
diagram; it describes prior knowledge and preferred paths.

Defaults and Inheritance Hierarchies with Defaults

Finally, the IP theory assumes that learners possess some
knowledge about what events are improbable to happen. We
describe it in ASP using a known methodology for repre-
senting defaults (Baral and Gelfond 1994). We base our
choice on two reasons. First, encoding this kind of knowl-
edge using defaults is very close, in our opinion, to how hu-
mans think about probable and improbable events. Second,
in the description and exemplification of the IP theory, the
given explanations are of the type “Normally, people do not
bite animals”, which are default statements. For example,
we encode the default above as follows:

1In contrast with hpd(Ev), the relation occurs(Ev, I) is used
with events extracted by a learner from a text. Such events are
“hypothetical” in the sense that they did not necessarily happen in
reality. This can be either because the text is not truthful or because
the learner did not extract the correct meaning out of the text.

¬occurs(ev(bite, E1, E2), I)←
inst(E1, humans),
inst(E2, animals),
not occurs(ev(bite, E1, E2), I),
not ab(d1(ev(bite, E1, E2), I)).

Next, we represent exceptions to these defaults. We can
say that Mike Tyson is an exception, as he is known to have
bitten other people (but not children). It is also known that
children may bite other animals, especially at the toddler
stage. These are weak exceptions, as they make the default
in the rule above inapplicable. They are encoded as:

ab(d1(ev(bite, tyson,E2), I))←
inst(E2, humans),
¬inst(E2, children).

ab(d1(ev(bite, E1, E2), I))←
inst(E1, children),
not ab(d3(ev(bite, E1, E2), I)).

The class children is a son of the class humans in the hier-
archy C. The last axiom, which is also a default, describes
a case in which a property of the class humans does not
propagate down in the inheritance hierarchy.

The examples above illustrate how we applied known
ASP techniques to represent defaults within an inheritance
hierarchy, relevant for our formalization of IP.

The First Principle of Input Processing
Principle 1 of IP describes what chances words in a sentence
have to get processed during online comprehension. It takes
as an input a sentence and the background knowledge of a
learner and produces a possibly partial mapping of words
(interpreted according to some category) into concepts. This
principle is listed in (VanPatten 2004) as follows:

1. The Primacy of Meaning Principle. Learners process
input for meaning before they process it for form.

1a. The Primacy of Content Words Principle. Learners
process content words in the input before anything else.

1b. The Lexical Preference Principle. Learners will tend
to rely on lexical items2 as opposed to grammatical form to
get meaning when both encode the same semantic informa-
tion.

1c. The Preference for Nonredundancy Principle. Learn-
ers are more likely to process nonredundant meaningful
grammatical forms before they process redundant meaning-
ful forms.

1d. The Meaning-Before-Nonmeaning Principle. Learn-
ers are more likely to process meaningful grammatical forms
before nonmeaningful forms irrespective of redundancy.

1e. The Availability of Resources Principle. For learners
to process either redundant meaningful grammatical forms
or nonmeaningful forms, the processing of overall sentential
meaning must not drain available processing resources.3

1f. The Sentence Location Principle. Learners tend to
process items in sentence initial position before those in fi-

2A lexical item is a word (e.g., “cat”) or sequence of words
(e.g., “look for”) that is the basic unit of the mental vocabulary.

3Processing resources refers to resources available in the
learner’s working memory for processing on-line input.

nal position and these latter in turn before those in medial
position (all other processing issues being equal).

Example 1. Let us show what predictions Principle 1 makes
about the processing of words from the following sentence:

S1. The cat was bitten by the dog.
According to 1a, content words (i.e., nouns, verbs, adjec-
tives, and adverbs) have the highest chance of getting pro-
cessed, in this case: “cat”, “bitten”, and “dog”. Among
them, based on 1f, “cat” has the highest chance as it is in
sentence initial position, followed by “dog” in final posi-
tion, and then by “bitten” in medial position.

The next chance belongs to meaningful forms based on
1d, in this case: “the”, “was”, “by”, together with “cat” as
an indicator of third-person singular, and “bitten” as an in-
dicator of passive voice. According to 1c, out of these forms,
the non-redundant ones are more likely to get processed, in
particular the definite article “the” and the word “cat” as
an indicator of third-person singular, both in initial position,
followed by “the” in final sentence position, and then by the
forms “was” as an indicator of past tense and “bitten” as an
indicator of passive voice in medial position.

Principle 1e says that the whole sentence has the next
chance of getting processed, followed by the redundant form
“by”. Finally, according to 1b, the redundant form “was”
as an indicator of third-person singular may or may not get
processed, independently of available resources, because its
meaning was already obtained from the word “cat”. Note
that how many words, in their order or likelihood, actually
get processed depends on the resource capacity of a learner.

Principle 1 and its corollaries specify a partial order between
words in a sentence, given the category they belong to and
their sentential position. Greater elements in this ordering
have more chances of being processed than lesser elements.

We start formalizing Principle 1 by looking at its sub-
principles 1a, 1c, and 1d. Together, they describe a partial
order on word categories. To model it, we define a relation
is ml ctg on categories, where is ml ctg(Ctg1, Ctg2) says
that words from category Ctg1 are more likely to get pro-
cessed than words from category Ctg2. Based on Principle
1a, we have the fact:

is ml ctg(content words, forms).
From Principle 1d, we have that:

is ml ctg(m forms, nm forms).
and from Principle 1c:

is ml ctg(nr m forms, r m forms).
Next, we look at Principle 1f, which describes a sim-

ilar partial order on sentence positions. To specify the
different possible sentence positions, we define a sort
sentence position with three elements: initial, medial,
and final. We use a relation is ml pos(Pos1, Pos2),
which says that words in sentence position Pos1 are more
likely to be processed than words in Pos2 (as long as they
belong to the same word category). We encode Principle 1f
via the facts:

is ml pos(initial, final).
is ml pos(final, medial).

By ml ctg and ml pos, respectively, we denote the transi-
tive closures of the two relations above. In addition, we ex-

tend the relation ml ctg down to subclasses of categories,
but not upwards to superclasses.

Based on the two relations above, we can now define
the partial relation between words, given their category and
position. The IP theory does not precisely say how many
words starting from the beginning of a sentence are part
of the initial sentence position. We define it as the first
n words of a sentence, where n is a parameter of the en-
coding. Similarly for final positions. We use the rela-
tion pos(K, S, Pos) to say that the Kth word of sentence
S is in Pos sentence position. We introduce a relation
ml wrd(K1, S, Ctg1, K2, Ctg2), which says that the Kth

1
word of S is more likely to get processed for its interpreta-
tion as an element of the category Ctg1 than the Kth

2 word
of the same sentence for category Ctg2. To simplify the
encoding of future axioms, we limit this relation to cat-
egories content words, nr m forms, r m forms, and
nm forms, mentioned in Principle 1, which we consider
to be of a special sort ctg p1:

ml wrd(K1, S, Ctg1, K2, Ctg2)←
ctg p1(Ctg1), ctg p1(Ctg2),
word(K1, S,W1), inst(W1, Ctg1),
word(K2, S,W2), inst(W2, Ctg2),
ml ctg(Ctg1, Ctg2).

ml wrd(K1, S, Ctg,K2, Ctg)←
ctg p1(Ctg),
word(K1, S,W1), inst(W1, Ctg),
word(K2, S,W2), inst(W2, Ctg),
pos(K1, S, Pos1), pos(K2, S, Pos2),
ml pos(Pos1, Pos2).

The first rule relates to Principles 1a, 1c, and 1d, as it is
based on the ordering of categories; the second rule is about
Principle 1f, as it uses the sentence position ordering, for a
given category of words. The effects of the ordering ml wrd
on the processing of a sentence will be seen later, when we
present a relation called resources consumed.

Next, we describe the conditions for a word to get pro-
cessed (i.e., to be mapped into a concept). We introduce a
relation map(K, S,Ctg, C), which says that the Kth word
of S was processed for its interpretation according to cate-
gory Ctg and was mapped into concept C. We encode Prin-
ciple 1 as:

map(K, S,Ctg, C)←
ctg p1(Ctg), word(K, S,W), inst(W, Ctg),
meaning(W, Ctg, C),
enough resources available(K, S,Ctg),
not ab(dmap(K, S,Ctg, C)).

This says that, normally, a word will be processed if there
are enough resources available. Our representation of pro-
cessing resources does not attempt to be a model of work-
ing memory as the IP theory focuses mainly on what the
end result of processing a sentence in working memory is
expected to be: certain word-to-concept associations will
be made while others will not. We model processing re-
sources using the unary predicate resource capacity(N)
(the maximum number of resources that a learner can use

in processing one sentence is N) and making the simplify-
ing assumption that the processing of any word or of the
whole sentence takes up one resource. We add a predi-
cate resources consumed(N, K, S,Ctg), which says that
N resources are consumed in processing more likely words
than the Kth word of sentence S for category Ctg. The
definition of this relation captures the implications of the or-
dering ml wrd on the processing of words, as follows:

resources consumed(N, K, S,Ctg)←
ctg p1(Ctg), word(K, S,W), inst(W, Ctg),
N = #count {ml wrd(K1, S, Ctg1, K,Ctg) :

ctg p1(Ctg1) }.

(#count is a function returning the cardinality of a set). We
add a predicate, resources required(N, K, S,Ctg) (N
resources are necessary to process words that are equally
likely to be processed as the Kth word of S for category
Ctg). Then, enough resources available(K, S,Ctg) is
true if the capacity exceeds or is equal to the sum of re-
sources consumed and required.

To model Principle 1e, we also count resources consumed
on processing the whole sentence as part of our calculation
for enough resources available:

enough resources available(K, S,Ctg)←
resources consumed(N1, K, S, Ctg),
resources consumed sent(N2, S, Ctg),
resources required(N3, K, S, Ctg),
resource capacity(N), N −N1 −N2 ≥ N3.

and define these consumed resources to be equal to 1 for cat-
egories r m forms (i.e., redundant meaningful forms) and
nm forms (i.e., nonmeaningful forms), and 0 otherwise.

The only remaining principle is 1b. Based on its accom-
panying explanation in (VanPatten 2004), its meaning is that
a form that is normally redundant may not be processed at all
if it is actually redundant in that sentence (i.e., its meaning
was already extracted from some other word). We encode
this knowledge as a possible weak exception to the default
in the rule about map via a disjunctive rule:

ab(dmap(K, S,Ctg, C)) ∨ ¬ab(dmap(K, S,Ctg, C))←
word(K, S,W), meaning(W, Ctg, C),
word(K1, S,W1), K 6= K1, W 6= W1,
map(K1, S, Ctg1, C).

The informal reading of this axiom is that meanings that are
actually redundant in a sentence may or may not be excep-
tions to the default for relation map.

This ends our formalization of Principle 1 and its corol-
laries. We collect the rules above in a program P1.

The Second Principle of Input Processing
Principle 2 describes the strategies that learners use to ex-
tract the meaning of a sentence, given the words they were
able to process. The input of Principle 2 is the output of
Principle 1 for a given sentence (i.e., a mapping of words to
concepts). Its output is an event denoting the meaning ex-
tracted by the learner from the sentence. This principle is
listed in (VanPatten 2002; 2004) as follows:

2. The First Noun Principle (FNP). Learners tend to pro-
cess the first noun or pronoun they encounter in a sentence
as the agent.

2a. The Lexical Semantics Principle. Learners may rely
on lexical semantics,4 where possible, instead of on word
order to interpret sentences.

2b. The Event Probabilities Principle. Learners may rely
on event probabilities, where possible, instead of on word
order to interpret sentences.

2c. The Contextual Constraint Principle. Learners may
rely less on the First Noun Principle if preceding context
constrains the possible interpretation of a clause or sen-
tence.

2d. Prior Knowledge. Learners may rely on prior knowl-
edge, where possible, to interpret sentences.

2e. Grammatical Cues. Learners will adopt other pro-
cessing strategies for grammatical role assignment only af-
ter their developing system5 has incorporated other cues.

Example 2. We illustrate the predictions made by Principle
2 for several sentences. First, we consider the case of begin-
ner learners, who have limited resources and vocabulary, and
can only process the content words out of a sentence. Based
on Principle 1, beginners would map the words “cat”, “bit-
ten”, and “dog” in sentence S1 from Example 1 into the
concepts cat, bite, and dog respectively and would not be
able to process any other words. Principle 2 predicts that
beginners would assign agent status to the first noun in S1

and hence interpret S1 incorrectly as “The cat bit the dog.”
Beginners are expected to correctly interpret the sentence:
S2. The shoe was bitten by the dog.

as a shoe cannot bite a dog (lexical semantics). According
to Principle 2a, lexical semantics overrides the assignment
of agent status to the first noun. The sentence:

S3. The man was bitten by the dog.
is also supposed to be interpreted correctly by beginners be-
cause men normally do not bite animals (event probabilities
and Principle 2b). Similarly for the sentence:

S4. The man was bitten by the child.
where we see the application of defaults in an inheritance
hierarchy. Principle 2d predicts the correct interpretation of:

S5. Holyfield was bitten by Tyson.
assuming that learners have the prior knowledge that Tyson
bit Holyfield.

Let us now consider some short paragraphs:
P1. (S6.) The cat pushed the dog. (S7.) Then, the dog

was bitten by the cat.
Sentence S7 is supposed to be incorrectly interpreted by be-
ginners because none of the Principles 2a-e applies. Instead,
the second sentence of the paragraph:

P2. (S8.) The cat killed the dog. (S9.) Then, the dog
was bitten by the cat.

would be interpreted correctly due to lexical semantics in
context, as predicted by Principles 2a and 2c together.

4Lexical semantics refers to the meaning of lexical items.
5Developing system refers to the representation of grammatical

knowledge in the mind of the second language learner. This repre-
sentation changes as the learner acquires more knowledge.

Finally, let us consider advanced learners who possess
enough resources and a large vocabulary, which allow them
to map all words in a sentence into concepts. According
to Principle 2e, these learners are expected to interpret all
above sentences correctly, as they are able to detect the use
of the active or passive voice and can rely on grammatical
cues for sentence interpretation.

Principle 2 is a default statement and its sub-principles ex-
press exceptions to it. Our encoding will be based on some
auxiliary relations: (1) first noun(K, S) (the Kth word of
sentence S is its first noun), and similarly for verb(K, S),
second noun(K, S); and (2) a relation contains con−
cepts(S, E1, A,E2) (sentence S contains entity concept E1

expressed by the first noun, action concept A expressed by
its verb, and entity concept E2 by its second noun).

The meaning of a sentence is an event. We remind the
reader that we limited ourselves to events formed by actions
requiring an agent and an object, and that ev(A, E1, E2) de-
notes the event of action A being executed by agent E1 onto
object E2. In what follows, if a sentence S contains concepts
E1, A, and E2, in this order, we will call ev(A, E1, E2) the
direct meaning of S and ev(A, E2, E1) its reverse meaning.

To encode Principle 2, we use a relation extr m(Ev, S,
fnp) saying that the learner extracted the meaning Ev from
sentence S by applying the First Noun Principle (FNP):

extr m(ev(A, E1, E2), S, fnp)←
contains concepts(S, E1, A,E2),
not extr m(ev(A, E2, E1), S, fnp).

The rule says that learners applying the FNP will extract the
direct meaning from a sentence, unless they extract the re-
verse meaning. The extraction of the reverse meaning is en-
coded by several rules presented below.

We represent Principle 2a using the axiom:
extr m(ev(A, E2, E1), S, fnp)←

contains concepts(S, E1, A,E2),
impossible(ev(A, E1, E2), I),
not impossible(ev(A, E2, E1), I).

Informally, it says that learners will assign the reverse mean-
ing to a sentence if this is a possible meaning and the direct
meaning is impossible.

The formalization of Principle 2b will be similar:
extr m(ev(A, E2, E1), S, fnp)←

contains concepts(S, E1, A,E2),
not impossible(ev(A, E1, E2), I),
¬occurs(ev(A, E1, E2), I),
not hpd(ev(A, E1, E2)),
not ¬occurs(ev(A, E2, E1), I).

I.e., a sentence will be assigned its reverse meaning if the
direct meaning is possible, unlikely, and not known to have
actually happened, while the reverse meaning may hypothet-
ically occur (i.e., it is possible and not unlikely).

Principle 2d is encoded as follows:
extr m(ev(A, E2, E1), S, fnp)←

contains concepts(S, E1, A,E2),
not impossible(ev(A, E1, E2), I),
not impossible(ev(A, E2, E1), I),
hpd(ev(A, E2, E1)).

This says that a learner using the FNP will extract the reverse
meaning if he knows that this event actually happened.

The preference for grammatical cues when such cues can
be interpreted (Principle 2e) is encoded via the rules:
extr m(Ev, S) ← extr m(Ev, S, grm cues).
extr m(Ev, S) ← extr m(Ev, S, fnp),

not extr m by(S, grm cues).
extr m by(S, X) ← extr m(Ev, S, X).

where extr m(Ev, S) says that Ev is the meaning ex-
tracted from S; extr m(Ev, S, grm cues) – the meaning
Ev was extracted from S based on grammatical cues; and
extr m by(S, X) – the meaning of S was extracted based
on strategy X . We exemplify the rules defining extr m(Ev,
S, grm cues) for the case of the English passive voice:

extr m(ev(A, E1, E2), S, grm cues)←
contains concepts(S, E1, A,E2),
voice(S, active).

extr m(ev(A, E2, E1), S, grm cues)←
contains concepts(S, E1, A,E2),
voice(S, passive).

For this particular definition we used the relation voice(S,
passive/active) (S is formulated in passive/active voice).
We say that a learner detected the passive voice in a sentence
if he was able to process the past participle (e.g., “bitten”)
and passive voice auxiliary (e.g., “was”) appearing in it. He
detected the active voice if he was able to process forms and
he did not encounter the two markers for passive voice.

In our formalization of FNP, Principle 2c was embedded
in the representation of Principles 2a, 2b, and 2d. The one
thing left for contextual constraints is to record the events
corresponding to the meaning extracted from previous sen-
tences of the story, assuming the story time starts at step 0:

occurs(Ev, I − 1) ← extr m(Ev, S),
paragraph(P),
sent(I, S, P).

The rules for Principle 2 are collected in a logic program P2.

Predictions about the English Passive Voice
We used our model of the IP theory to generate automated
predictions about how sentences like the ones in Examples 1
and 2 would be interpreted by learners of English. We tested
our formalization of IP by verifying that our automated pre-
dictions matched with what the theory predicts. We consid-
ered two different versions of H: one for advanced learners
(Hadv) and another one for beginners (Hbeg). Hadv con-
tains all the instances shown in Fig.1; Hbeg contains only
instances of content words. For each type of learner, we cre-
ated a logic program Π (indexed by either adv or beg) by
putting together: the corresponding encoding H of hierar-
chies C and L with their instances; the action descriptionA;
the encoding of defaults D; the prior knowledge G; and the
formalizations of the two principles P1 and P2.

For any input sentence or paragraph X , the answer set(s)
of the program Π ∪ lp(X) corresponds to predictions of the
IP theory about how a learner would interpret X .
We first run tests for Principle 1 by using sentence S1 from
Example 1, copied here with its words annotated by their

Table 1: Automated Predictions for Principle 1
Capa- Additional map Facts in the Answer Set(s)

city w.r.t. the Answer Sets for Smaller Capacities
0 ∅
1 map(2, s1, content words, cat)
2 map(7, s1, content words, dog)
3 map(4, s1, content words, bite)
9 map(1, s1, nr m forms, def)

map(2, s1, nr m forms, third pers sg)
map(6, s1, nr m forms, def)
map(3, s1, nr m forms, passive v aux)
map(3, s1, nr m forms, past tense)
map(4, s1, nr m forms, past participle)

11 map(5, s1, r m forms, agency)
map(3, s1, r m forms, third pers sg)∗

Table 2: Automated Predictions for Principle 2
X Answer Set of Πbeg ∪ lp(X) contains Notes
S1 extr m(ev(bite, cat, dog), s1) Wrong

extr m by(s1, fnp) Interp.
S2 extr m(ev(bite, dog, shoe), s2) Correct

impossible(ev(bite, shoe, dog), 0) Interp.
S3 extr m(ev(bite, dog,man), s3) Correct

¬occurs(ev(bite, man, dog), 0) Interp.
S4 extr m(ev(bite, child, man), s4) Correct
S5 extr m(ev(bite, tyson, holyfield), s5) Correct

hpd(ev(bite, tyson, holyfield)) Interp.
P1 extr m(ev(push, cat, dog), s6) Wrong

extr m(ev(bite, dog, cat), s7) Interp.
P2 extr m(ev(kill, cat, dog), s8) Correct

extr m(ev(bite, cat, dog), s9) Interp.
¬holds(alive(dog), 1)
impossible(ev(bite, dog, cat), 1)

X Answer Set of Πadv ∪ lp(X) contains Notes
S1 extr m(ev(bite, dog, cat), s1) Correct

extr m by(s1, grm cues) Interp.

sentential indices for a better understanding of the results:
S1. The1 cat2 was3 bitten4 by5 the6 dog7. We considered
different resource capacities and set the sentence position
parameter n to 2. The answer sets of Πadv ∪ lp(S1) con-
tained the map facts presented in Table 1, where an atom
map(k, s1, ctg, c) in the answer set for capacity m indicates
that the kth word of S1 will get processed by a learner with
capacity m. Note that the map atom on the last line of the
table is marked with an asterisk because two answer sets
are generated for this capacity and this atom is part of one
of them but not the other. Next, we tested our predictions
for Principle 2 for beginners and advanced learners. The
relevant parts of the answer sets for the sentences and para-
graphs in Example 2 can be seen in Table 2. Our automated
predictions matched the ones in Examples 1 and 2, which
suggests that our model of IP is correct.

The System PIas

We created a system, PIas, designed to assist instruc-
tors in preparing materials for the passive voice in English.
PIas follows the guidelines of a successful teaching method
called Processing Instruction (PI) (VanPatten 2002), devel-
oped based on the principles of IP. For a sentence to be valu-
able in this approach, it must lead to the incorrect interpre-
tation when grammatical cues are not used and the FNP is.
S1 above is such an example; sentences S2 to S5 are not.

PIas has two functions. The first one is to specify
whether sentences and paragraphs created by instructors are
valuable or not. This is relevant because even instructors
trained in PI happen to create bad materials. We define:

valuable(S) ← extr m(Ev1, S, grm cues),
extr m(Ev2, S, fnp),
Ev1 6= Ev2, voice(S, passive).

This says that a sentence in the passive voice is valuable if its
interpretation using grammatical cues (the correct one) does
not coincide with the one based on FNP. We create a module
M containing the definition above and its extension to para-
graphs. PIas takes as an input a sentence or paragraph X
in natural language, encodes it in its logic form lp(X), and
computes the answer sets of a program consisting of Πadv ,
M, and lp(X). X is valuable if the atom valuable(X) be-
longs to all the answer sets of the resulting program.

The second function of PIas is to generate all valuable
sentences given a vocabulary and some simple grammar.
This is important because PI requires to expose learners to
a large number of valuable sentences. We add to M rules
for sentence creation. For instance, one particular type of
sentence is generated by:
sentence(s(“The”, N1, “was”, V, “by”, “the”, N2))←

schema(N1, V, N2).
word(1, s(“The”, N1, “was”, V, “by”, “the”, N2), “the”)

← schema(N1, V, N2). . . .
where schema(N1, V, N2) is true if N1 and N2 are common
nouns and V is a verb in the past participle form (e.g., “bit-
ten”). Atoms of the type valuable(S) in the answer set(s) of
the program Πadv ∪M give all the valuable sentences that
can be generated using our grammar and vocabulary.

Discussions and Future Work
This paper has shown that the use of ASP and its established
methodologies for knowledge representation allowed us to
formalize an important theory about second language acqui-
sition in a natural way, without the need for extensions of
ASP. Predicting how learners would interpret sentences in
the second language was reduced to the task of computing
answer sets of a logic program. By formalizing the IP the-
ory, we were able to notice some of its vague areas. E.g., the
notion of “initial sentence position” is not precisely defined
and the theory does not clearly specify what amount of re-
sources learners allocate for noticing words, accessing their
meaning, processing them, etc. The only hint indicates that
the simple processing of content words drains the resources
of beginner learners. In such cases, we refined the theory by
providing specific values to these parameters. Tuning them
in the future can contribute to the development of IP theory.

This work can be expanded in various ways. We plan
to improve the system PIas to generate even more com-
plex instructional materials according to the Processing In-
struction teaching method. We also intend to refine the
formalization of resources. Our current model does not
capture cases when a learner hears a sentence or parts
of it twice and the initial processing carries over to the
second instance. Finally, it would be interesting to ex-
plore how we could make use of the short and long-term
memory models described in Balduccini and Girotto (2010;
2011). The potential connection we see comes from the
fact that the IP theory uses the concept of working memory,
which is based on that of short-term memory.
Acknowledgments The author warmly thanks Michael Gel-
fond and Marcello Balduccini for their valuable suggestions.

References
Balduccini, M., and Gelfond, M. 2003. Diagnostic reason-
ing with A-Prolog. TPLP 3(4–5):425–461.
Balduccini, M., and Girotto, S. 2010. Formalization of Psy-
chological Knowledge in Answer Set Programming and its
Application. TPLP 10(4–6):725–740.
Balduccini, M., and Girotto, S. 2011. ASP as a Cognitive
Modeling Tool: Short-Term Memory and Long-Term Mem-
ory. In Balduccini, M., and Son, T. C., eds., Logic Program-
ming, Knowledge Representation, and Nonmonotonic Rea-
soning, volume 6565 of LNCS, 377–397. Berlin: Springer.
Baral, C., and Gelfond, M. 1994. Logic Programming and
Knowledge Representation. Journal of Logic Programming
19(20):73–148.
Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Computing 9(3/4):365–386.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on AI 3(16):193–210.
Hayes, P. J., and McCarthy, J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.
Marek, V. W., and Truszczynski, M. 1999. Stable models
and an alternative logic programming paradigm. The Logic
Programming Paradigm: a 25-Year Perspective. Springer
Verlag, Berlin. 375–398.
Niemelä, I. 1998. Logic Programs with Stable Model Se-
mantics as a Constraint Programming Paradigm. In Pro-
ceedings of the Workshop on Computational Aspects of Non-
monotonic Reasoning, 72–79.
VanPatten, B. 1993. Grammar teaching for the acquisition-
rich classroom. Foreign Language Annals 26:435–450.
VanPatten, B. 2002. Processing Instruction: An Update.
Language Learning 52(4):755–803.
VanPatten, B. 2004. Input Processing in Second Language
Acquisition. Mahwah, NJ: Lawrence Erlbaum Associates.
5–32.

